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Abstract

At the beginning of thermodynamics studies, it is commonly stated
that a reversible process is one in which the system can be returned to
its initial state without any change in the universe. Subsequently, it is
claimed that an example of a reversible process is the heat exchanged
between two bodies with a very small temperature difference. However,
clear links between these two statements are lacking. This article aims
to bridge the gap between these two assertions by providing a clear and
coherent link. The demonstration of the link is based on a simple yet
powerful hypothesis: two identical bodies brought into contact will reach
an equilibrium temperature that is the average of the initial temperatures
(we will assume work is always negligible). A significant thermodynamic
result will be achieved with a straightforward (though somewhat labori-
ous) mathematical approach. The article presents all the necessary cal-
culations, allowing the reader to focus on understanding the underlying
reasoning.

1 How the problem is addressed in literature

The idea that the heat flow between bodies with a very small temperature
difference is reversible is a basis of reversibility of Carnot’s engine, and therefore,
in a sense, a basis of the second principle and of the whole thermodynamics. We
can observe that Maxwell and other pioneers of thermodynamics had recognized
the importance of the problem: in [1, pag. 149-150] it is stated

The peculiarity of Carnot’s engine is, that whether it is receiving
heat from hot body, or giving out to the cold body, the temperature
of the substance in the engine differs extremely little from that of
the body in thermal communication with it. [...] we may make
the actual temperature difference which causes the heat flow to take
place as small as we please. [...] an exceedingly small alteration of
temperature will be sufficient to reverse the heat flow, if motion is
slow enough. [...] by working the engine sufficiently slowly these
differences may be reduced within any limits we please to assign,
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so that for theoretical purposes we may regard Carnot’s engine as
strictly reversible.

However, the ultimate conclusion is not substantiated: the fact that small tem-
perature gradients ensure reversibility of heat flows is taken for granted by
Maxwell without proof. On the other hand, in later classic thermodynamics
textbooks, such as [2] and [3], this intriguing matter does not seem to be dis-
cussed. In some modern textbooks, the issue is occasionally mentioned, but in
my view, it has not been addressed satisfactorily; this article intends to delve
into this matter more deeply, aiming to provide a more complete and satisfactory
examination. Three instances will be briefly described.

a) In [4, sec. 44.3] it is said that two bodies with infinitesimal temperature dif-
ference can experience reversible heat flows. However, the concept is argued
rather vaguely, and a proof is lacking.

b) In [5, pag. 181] two bodies at different temperatures, able to communi-
cate thermally, are considered. It is said that with a finite temperature
difference between them the spontaneous heat transfer would be a source
of irreversibility, but the importance of this irreversibility would diminish
as the temperature difference approaches zero. Sometimes the absence of a
proof, replaced by the sentence “it might be expected”, might be acceptable.
But in this case the problem is that it is not clear what guarantees that a
process that can be carried out with heat flows between bodies at infinitely
close temperatures is, in this limit, reversible.

c) Similarly, in [6, pag. 24] two bodies in perfect thermal contact and infinites-
imal temperature difference are considered. The author underlines that a
change in the circumstances by just more than δT will reverse the direction
of the heat flow. I think that, although this conclusion is evident, it is not
clear why the process must be reversible in the technical sense introduced a
few lines earlier in the text: “A reversible process is one such that the system
can be restored to its initial state without any net change in the rest of the
universe”.

In brief, I find in the literature an absence of a clear explanation of the link be-
tween the “restoring universe” definition of reversible process, and the reversibil-
ity of heat flows between bodies with almost the same temperature. However
this link is important because it demonstrates that the concept of Carnot’s
engine, reversible by definition, is meaningful. Reversibility is commonly im-
plicitly assumed to be correct, although it has not been formally proven. In the
following sections I will demonstrate how, with a simple thought experiment,
the gap can be satisfactorily bridged.

2 Description of thought experiment

Consider a body ξ at temperature Ti and let’s suppose we want to heat it to a
temperature Tf > Ti and then to cool it to the initial temperature Ti, with a
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process that restores the initial state (nothing must be changed in the universe).
Is it possible? Strictly speaking, no, but we can imagine a procedure that, as
a limiting result, reaches the goal. Of course, we can put ξ in thermal contact
with an identical body with temperature 2Tf − Ti and then with one with
temperature 2Ti − Tf (provided that Ti > Tf/2). In this way we achieve the
goal of bringing the ξ temperature from Ti to Tf and then again to Ti, but at
the cost of altering the universe: the two auxiliary bodies experience a change
in temperature 2Tf − Ti → Tf and 2Ti − Tf → Ti.

One may think of bypassing this issue by employing two thermal reservoirs
instead of bodies with finite heat capacity. Their immense heat capacity would
allow the body to be heated and then cooled, leaving the universe in its initial
state. But this approach is flawed: during the process a finite quantity of
energy has been transferred from one thermal reservoir to another, and even if
we can minimize the temperature variations between the initial and final state
(by choosing sufficiently large thermal capacities for the reservoirs), a finite
amount of energy has unquestionably changed its position: the universe is not
returned to its initial state. The fact that we can approximately restore the
same energy density as at the beginning is irrelevant. This being the case,
reversibility is not guaranteed. It is not necessary to investigate this aspect
here, but a deeper analysis shows that the process just described with thermal
reservoirs is not reversible: there was a finite increase in entropy of universe (but
discussing entropy without first having demonstrated that the heat exchange
between bodies at very similar temperatures is reversible, it would be circular).

Nevertheless, there is a method to achieve the goal of performing a heating
and cooling cycle for ξ, leaving at the end the universe in its initial state:
it is sufficient to use a sort of long “thermal chain” of auxiliary bodies with
temperature into the range Ti ↔ Tf . By using such a long “chain”, the body ξ
can be brought from Ti to Tf and back to Ti, without producing any net change
in the universe. Looking at fig. 1 on the following page the reader can guess the
methods of the thought experiment, which I will explore in detail in the next
sections. To simplify the calculations, I will assume that the auxiliary bodies of
the thermal chain have the same heat capacity as the body ξ.

3 The heating process

3.1 Proof that the equilibrium temperature when ξ is put
in thermal contact with nth auxiliary body is (2)

Suppose we haveN bodies identical to ξ (or anyway with the same heat capacity)
with temperatures

Ti+
Tf − Ti
N

Ti+2
Tf − Ti
N

. . . Ti+(N−1)
Tf − Ti
N

Tf (1)

and imagine to put subsequently ξ (initially at temperature Ti) in thermal
contact to these bodies (first to the body at temperature Ti +(Tf −Ti)/N , then
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ξ
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· · ·

Figure 1: The heating process. T1 is near the initial temperature of ξ. Inter-
mediate bodies are supposed to be many. A tilde show that temperature of
intermediate body is slightly perturbed.

to the body at temperature Ti+2(Tf−Ti)/N , etc.). The process is schematically
represented in fig. 1. I claim that the equilibrium temperature when ξ is put in
thermal contact with nth auxiliary body is given by

(2n(N − n+ 1)− 1)Ti + (2n (n− 1) + 1)Tf
2nN

(2)

where N is the total number of the bodies in the thermal chain, while n is the
particular body of the step we are considering, that has temperature

Ti +
n

N
(Tf − Ti) (3)

I’ll prove this claim exploiting mathematical induction.

1) The formula (2) works if n = 1 because it is easy to see that after thermal
contact with the first body, the equilibrium temperature is

(2N − 1)Ti + Tf
2N

(4)

2) If the equilibrium temperature when ξ is put in thermal contact with nth

auxiliary body is given by (2), then its equilibrium temperature when it is
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put in thermal contact with (n+ 1)th auxiliary body, that has temperature
Ti + (n+ 1)(Tf − Ti)/N , is given by the average value:(

2n+1(N − n)− 1
)
Ti +

(
2n+1n+ 1

)
Tf

2n+1N
(5)

but this is exactly what we find if we change n to n+1 in (2). This completes
the proof.

Please note that calculating N → ∞ in (2) is useless because if n is finite and
we use infinite auxiliary bodies, we cannot move from the thermal neighborhood
of the initial state of ξ, and the limit gives Ti. Before making N diverging we
must calculate the final temperature putting n = N :(

2N − 1
)
Ti +

(
2N (N − 1) + 1

)
Tf

2NN
(6)

This gives Tf if N → ∞ so we reached the goal of bringing ξ to temperature
Tf (strictly speaking the temperature Tf is never reached with this process, but
the point is that we can get as close to Tf as we want, if we increase the number
of auxiliary bodies: this is what we proved now taking the limit).

3.2 Proof that every thermal jump, in heating process, is
infinitesimal

We can wonder if in the limit N →∞ (large number of auxiliary bodies) every
thermal jump of ξ is always infinitesimal. It is intuitive but to prove this formally
let’s consider the parameter x = n/N (we have 0 < x 6 1: x is the thermal
position, so to speak, of nth auxiliary body of the thermal chain). This allows us
to calculate the final temperature of every auxiliary body in the chain, when N
diverges. Replacing n with xN in the equilibrium temperature of nth auxiliary
body, given by (2), we find(

2Nx(1 +N(1− x))− 1
)
Ti +

(
2Nx (Nx− 1) + 1

)
Tf

2NxN
(7)

With the limit N → ∞ we get Ti + x(Tf − Ti), i.e. Ti + n(Tf − Ti)/N , but
this is the initial temperature of the nth auxiliary body, as can be seen from
(1). This is important: we found that in that limit all thermal jumps done by
ξ in the thermal chain are infinitesimal (they can be done as small as we want
taking more and more auxiliary bodies).

4 The cooling process

4.1 Proof that the equilibrium temperature when ξ is put
in thermal contact with (N − i)th auxiliary body is (8)

Let’s take a look to what happens doing the reverse process, that is putting
in thermal contact ξ with the auxiliary bodies (that in the first part of the
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thought experiment have changed their temperature), traveling the chain to
lower and lower ones. This time I don’t report figures but the reader certainly
understands how the thought experiment works. I claim that after thermal
contact with (N − i)th auxiliary body the equilibrium temperature is given by(

2N
(
2ii+ 1

)
− 22i+1+1

3

)
Ti +

(
22i+1+1

3 + 2N
(
2i(N − i)− 1

))
Tf

2N+iN
(8)

Again, I’ll prove this claim exploiting mathematical induction.

1) Substituting n with N − 1 in the formula (2) we find that after heating
process the (N − 1)th auxiliary body has temperature(

2N+1 − 2
)
Ti +

(
2N (N − 2) + 2

)
Tf

2NN
(9)

and putting in thermal contact with ξ (that at the end of the first part of
the thought experiment has temperature given by (6), as we found) we find
an equilibrium temperature that can be rearranged in

3
(
2N − 1

)
Ti +

(
2N (2N − 3) + 3

)
Tf

2N+1N
(10)

This is the same temperature that we find by substituting i with 1 in (8), so
the formula (8) works for the first thermal contact in the cooling process.

2) After the heating process, the (N − i − 1)th auxiliary body takes the tem-
perature given by (2) with n = N − i− 1:(

2N−i−1 (i+ 2)− 1
)
Ti +

(
2N−i−1 (N − i− 2) + 1

)
Tf

2N−i−1N
(11)

If the equilibrium temperature when ξ is put in thermal contact with the
auxiliary (N − i)th auxiliary body is given by (8), then its equilibrium tem-
perature when it is put in thermal contact with (N − i−1)th auxiliary body,
that has temperature (11) reached in the heating process, is given by the
average one (the length of the expression forced me to break the numerator,
as in (13), I think the symbols are clear)(

2N
(
2i+1 (i+ 1) + 1

)
− 22i+3+1

3

)
Ti+(

22i+3+1
3 + 2N

(
2i+1(N − i− 1)− 1

))
Tf

2N+i+1N
(12)

but this is exactly what we find if we change N − i to N − i − 1 (i.e. i to
i+ 1) in (8). This completes the proof.

Now we are ready for the final step. The core of the whole article is synthesized
in the title of the next section.
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4.2 Proof that the final state of the system is equal to the
initial one, and that every thermal jump, in cooling
process too, is infinitesimal

Making N → ∞ in (8) we get Tf , but this is a situation analogous to the one
we encountered before: this limit is not interesting because i and N must be
sent to infinity, so to speak, together (or we will inevitably end up squeezed
at the hot edge of the thermal chain). We can do it by exploiting the variable
x = (N − i)/N (it has always the same meaning as before: x is the “position”,
in the thermal chain, of the body considered, expressed as number between 0
and 1, the cold and the hot limit respectively). By substituting i with N(1−x)
in (8) we can write in this way the final temperature of the body characterized
by x (

2N(1−x)N(1− x) + 1− 2N(1−2x)+1+2−N

3

)
Ti+(

2N(1−2x)+1+2−N

3 + 2N(1−x)Nx− 1
)
Tf

2N(1−x)N
(13)

Considering that 0 < x 6 1, when N →∞ this quantity approaches

Ti + x(Tf − Ti) (14)

So, we again have that when the process is done coming back, bringing the
temperature of ξ from Tf to Ti, the equilibrium temperature of every body of
the thermal chain is the same as the initial temperature. Clearly all these claims
are meaningful if we consider the limiting case of many auxiliary bodies, and
strictly speaking the starting temperature is never reached again in this thought
experiment.

5 Why all the energy is returned to its original
position

As mentioned in section 2, in order to talk about a reversible process we must be
sure that everything can be restored to the original situation, and in particular
that all the energy transferred in the process from one body to another can
return to the initial bodies. As regards the auxiliary bodies the problem does
not arise because they only undergo two infinitesimal heat flows, therefore the
energy variation can be made as small as desired by increasing the length of
the thermal chain. The situation is more delicate regarding the body ξ, which
undergoes infinitely many infinitesimal heat flows. In reality, if we assume that
the coefficient of thermal expansion is small, the fact that ξ undergoes two
opposite temperature variations exhausts the problem: any work done by the
bodies on the surrounding system is assumed negligible and the energy content
of the bodies can only vary as a result of heat flows, directly proportional to
temperature variations. Nevertheless if the reader wants to explicitly check the
calculations (after all by dealing with limiting cases one could be misled, as the
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case of heat reservoir shows) I’ll report them here. Let’s consider the heating
and the cooling of ξ separately.

i) During the heating, the heat flowed to ξ when it moves from the nth to the
(n + 1)th body, is found by taking (5) minus (2), and then multiplying by
heat capacity C:

Qn = C

(
1− 1

2n+1

)(
Tf − Ti
N

)
(15)

By summing on n from 1 to N we find the total heat flowed to ξ:

Qheating = C

(
N +

1

2N+1
− 1

2

)(
Tf − Ti
N

)
(16)

Taking N →∞ we find the unsurprising result C(Tf − Ti).

ii) During the cooling, the (negative) heat flowed to ξ when it moves from
(N − i)th to (N − i−1)th body, is found by taking (12) minus (8), and then
multiplying by heat capacity C:

Qi = C

(
1− 1

2i+1
+

1− 22i+2

3 · 2i+N+1

)(
Ti − Tf
N

)
(17)

By summing on i from 0 to N − 1 we find the total heat flowed to ξ:

Qcooling = C

(
21−N +N − 5

3
− 1

3 · 22N

)(
Ti − Tf
N

)
(18)

Taking N →∞ we find a result opposite: C(Ti − Tf ).

We conclude that ξ gives off the same amount of heat that it receives: in the
limit N →∞ all the energy has returned to where it originally was.

6 Conclusions

The essence of what has been shown here is that starting from the trivial hy-
pothesis that 2 identical bodies at temperature T1 and T2 reach the equilibrium
at temperature (T1 + T2)/2, we can show with a thought experiment that we
can make a finite temperature change of a body ξ exploiting a thermal chain of
many (ideally infinite) bodies, and we have that

• all thermal jumps of the body ξ are infinitesimal;

• The body ξ can be brought from temperature Ti to temperature Tf (with
Tf − Ti finite, if auxiliary bodies are infinite) and then brought again to
Ti, without any change in the universe.

This demonstrates why infinitesimal heat fluxes are reversible.
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A Where the formulae proved by mathematical
induction come from

As often happens with proofs that exploit mathematical induction, the reader
may wonder where the proven formulae come from, they look as if they had
“fallen from the sky”. It is not necessary to answer this question to make the
proof “more rigorous”, and a completely legitimate answer could be “it was
found by a stroke of luck”. However clearly this is not the answer here, and it
could be interesting to show the reasoning that led me to consider the validity
of (2) and (8).

A.1 How formula (2) was found

Putting ξ in thermal contact with the first body, I find the equilibrium temper-
ature

(2N − 1)Ti + Tf
2N

(n = 1) (4)

Putting then in thermal contact with the second body, and going on with next
bodies, I got these equilibrium temperatures

(4N − 5)Ti + 5Tf
4N

(n = 2) (19)

(8N − 17)Ti + 17Tf
8N

(n = 3) (20)

(16N − 49)Ti + 49Tf
16N

(n = 4) (21)

(32N − 129)Ti + 129Tf
32N

(n = 5) (22)

(64N − 321)Ti + 321Tf
64N

(n = 6) (23)

It is clear what is happening with denominators, but with Google we can also
conjecture the trend of numerators. By consulting “The online encyclopedia of
integer sequences” we can conjecture that the sequence 1, 5, 17, 49, 129, 321, . . .
is given by {(n− 1) · 2n + 1}. This inspired the formula (2) for the equilibrium
temperature when ξ is put in thermal contact with the nth auxiliary body. The
conjecture is then rigorously proven in the article.

A.2 How formula (8) was found

We found that if after the whole heating process, ξ is put in thermal contact
with the (N−1)th auxiliary body, the equilibrium temperature is given by (10).
I’ll transcribe here without collecting 3 for reasons that will appear clear(

2N · 3− 3
)
Ti +

(
2N (2N − 3) + 3

)
Tf

2N+1N
(i = 1) (10)

9



Putting then in thermal contact with (N − 2)th auxiliary body, that after the
first part of the thought experiment assumes the temperature given by (2) with
n = N − 2,

(3 · 2N−2 − 1)Ti +
(
2N−2 (N − 3) + 1

)
Tf

2N−2N
(24)

we find an equilibrium temperature(
2N · 9− 11

)
Ti +

(
2N (4N − 9) + 11

)
Tf

2N+2N
(i = 2) (25)

Going on in this way, after thermal contact with (N−3)th and (N−4)th auxiliary
bodies, we find(

2N · 25− 43
)
Ti +

(
2N (8N − 25) + 43

)
Tf

2N+3N
(i = 3) (26)

and (
2N · 65− 171

)
Ti +

(
2N (16N − 65) + 171

)
Tf

2N+4N
(i = 4) (27)

Exploiting “The online encyclopedia of integer sequences” we guess that, rea-
sonably, 3, 9, 25, 65 is the sequence {n ·2n+1} while 3, 11, 43, 171 is the sequence{

(22n+1 + 1)/3
}

. So we are led to think that after thermal contact with (N−i)th
auxiliary body the equilibrium temperature is given by (8). Again, the conjec-
ture is rigorously proven in the article.
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